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Subject to uniform strain, an elliptical patch of vorticity in an inviscid, 
incompressible, two-dimensional fluid generally rotates or nutates and extends or 
compresses while retaining a precisely elliptical shape (the Kida solutions). This 
result is of interest because the uniform strain idealizes the leading-order distortional 
influence of distant vortices in a flow with many vortices. Because of the unsteady 
motion of the distant vortices, both the strain rate and the rotation rate of the strain 
axes typically vary with time. In the special case that the strain rate and rotation 
rate are steady, and when the strain rate is not too large, periodic motion of an 
elliptical vortex is possible. Larger strain rates lead to indefinite extension of the 
vortex. 

Uniform strain, however, only approximately mimics the effect of distant vortices. 
The local variations in the strain field around a vortex disturb the vortex, preventing 
it from retaining a simple, elliptical shape. These disturbances may amplify because 
of instabilities. In this paper, we examine the stability of periodic elliptical motion 
to small boundary disturbances, for the case of steady, uniform strain and rotation 
rate, first by linear Floquet theory and then by direct, high-resolution, nonlinear 
numerical integrations. It is discovered that a significant portion of the periodic 
solutions are linearly unstable. Instability can occur even when the strain rate is 
arbitrarily small and the basic motion arbitrarily close to circular. Extended 
nonlinear calculations exhibit recurrence, in some cases, and attrition of the vortex 
by repeated wave amplification, steepening, and breaking in others. 

1. Introduction 
In an inviscid, incompressible, two-dimensional fluid, a patch of uniform vorticity 

that is exactly elliptical remains elliptical when subjected to an external strain and 
rotation of the form 

us = y( t )  z- W )  y, 0, = Q ( t )  z-y( t )  Y, (1) 

where the strain rate, y ,  and the rotation rate, Q, are arbitrary functions of 
time t (Kida 1981). In general, the aspect ratio h and orientation q5 of the ellipse 
(see figure 1) vary with time, in accordance with 

-- - 2yh cos24, dh 
dt 

d# wh h2+ 1 
dt ( A  + l)* h2- 1 ' 

y sin 2q5 - -=Q+-- 
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FIQURE 1. Sketch of the basic ellipse. The quantities a(t)  and b ( t )  are the lengths of the semi-major 
and semi-minor axes respectively. The aspect ratio of the ellipse is defined as h = a/b .  Without loss 
of generality, ab = 1, and the vorticity of the fluid inside the ellipse exceeds that outside by unity 
(w = 1). 

whwc w. set to unity hereinafter, is the relative vorticity within the ellipse (relative, 
that is, to the uniform background value 2Q). 

This situation has interest not only in its own right but also as a possible 
idealization of the effects of distant vortices in an unsteady flow at  very high 
Reynolds numbers populated by many vortices. Such flows, which are of 
fundamental interest in geophysical fluid dynamics, often show a tendency to 
become more and more inhomogeneous, with the development of widely separated, 
well-organized vortices from smaller scale structures (Pornberg 1977 ; Basdevant, 
Legras & Sadourny 1981 ; McWilliams 1984; Legras, Santangelo & Benzi 1988). At 
first, the small structures rapidly combine or coalesce to form a succession of larger 
vortices. The rate of coalescence slows substantially with the growth of the vortices 
and, a t  late times, the vortices rarely encounter one another. These observations 
suggest that  it may be appropriate to study the dynamics of the flow in its late stages 
by considering just one vortex and approximating the local effects of the remaining 
vortices by the straining flow (1). Local departures from (1) will be assumed to be the 
source of disturbances to the vortex in question. 

The simplest model of a vortex in a straining flow takes the vortex to  be a uniform 
patch of vortieity. Of course, the realism of such a model might well be questioned; 
however, a separate study (Legras & Dritschel 1989) has examined the effects of the 
straining flow (1) on a vortex with distributed or non-uniform vorticity, and, briefly, 
it is found that strain strips away material from the periphery leaving the vortex 
with an exceedingly steep edge. A stripped vortex can retain some of its internal 
structure, that is to say a non-uniform profile of vorticity, but in some cases the 
stripping is so extensive that the remaining vorticity is practically uniform. It 
appears that  strong vortices with long lifetimes encounter a wide variety of external 
straining conditions and thereby tend to acquire very steep edge gradients (at very 
high Reynolds numbers). It is noteworthy that significant stripping can be brought 
about by surprisingly weak strain fields. The upshot is that, at very high Reynolds 
numbers, the vortex patch may not be as severe an idealization as might be thought. 

The motivation for the present study is the vortex patch’s possible relevance as a 
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model of the final stages of the life of an isolated, extensively stripped vortex subject 
to external strain and rotation. It is shown that the behaviour described by the Kida 
solutions is radically altered by the presence of small disturbances, such as might be 
introduced by slight departures from uniformity of strain and rotation. This is 
because many such disturbances are unstable. 

The concept of stability presupposes a steady, or periodic, basic flow. We choose 
the simplest such basic flow, namely the periodic Kida solutions, which are given by 
(2) for steady y and 52. (In fact certain periodic variations of y and 52 also result in 
periodic solutions, but these are not considered here.) The effect of unsteady, 
aperiodic strain and rotation must be examined by alternative means. This is beyond 
the scope of the present paper, but a proposal concerning it is put forth in $5 .  

The properties of the Kida solutions are recalled briefly in $2. Linearized 
disturbance equations are derived next in $3, and shown to take a remarkably simple 
form. A Floquet analysis provides maps of the maximum growth rate as a function 
of the basic-solution parameters and the disturbance symmetry. Section 4 presents 
nonlinear calculations. These reveal the order in amplitude at  which nonlinearity 
enters and incidentally check the linear Floquet analysis. Further nonlinear 
calculations push as deep as possible into the complex evolution of unstable vortices 
and disclose a recurring, disruptive sequence of events in which qualitatively 
different manifestations of instability appear. 

2. The undisturbed system 
For steady strain y and rotation 52, (2a)  and ( 2 b )  can be combined and integrated 

once to yield a relationship between the aspect ratio h and the orientation $ of the 
vortex a t  any time t : 

Thc constant G is found upon specifying A and $ at one instant of time, typically the 
initial time. However, it is more instructive to choose c in terms of A and $ a t  the time 
when A assumes its minimum value, say h = A, >, 1 .  From (2a) ,  i t  is clear that  a 
minimum must occur when cos2$ = 0 or sin2$ = f 1 (except when A, = 1 as noted 
below). Since all periodic solutions must have a minimum aspect ratio, it is sufficient 
to specify the four parameters y ,Q,  A, and s,  the sign of sin 2$ when h = A,. In  terms 
of these parameters, the constant of integration of (3) has the form 

A,- 1 (A,+ c = - -  [ (A,  + 1)  ys - (A, - 1 )  521 - log ____ . 
A 0  4ho 

(4) 

Since y and s appear only in the product ys, i t  is not only sufficient to consider 
y 2 0 and s = f 1, but a unique solution ( A ,  $) then corresponds to  each distinct 
choice of the four parameters. 

When A, = 1, h(t) can equal 1 only when sin24 = 0 (to keep the last term in ( 2 b )  
well behaved). While = dh/dt + 0 when h = 1 ,  the sign of cos2$ is abruptly 
reversed at the instant h = 1 in order to keep h 2 1 throughout the evolution. This 
perhaps worrisome procedure is given a sound basis by introducing transformed 
variables X and Y in terms of which h can be defined to be greater than or equal to 
1.  Let 

X = (h-h-l)cos2$, Y = (A-A-l)sin2$ (5a, b)  
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(cf. Melander, Zabusky & Styczek 1986). Then, the transformed equations of motions 
are 

X = - 2 Y ( 0 + Q e ) + y R ,  Y = + 2 X ( 0 + Q e ) ,  R = (X2+F) i ,  (6a ,  b,  C) 

where 
A 

0, = ~ 

( A  + 1 ) 2  
(7) 

is the rotation rate of a freely rotating (unforced) ellipse of aspect ratio 

A = (1 +iR2)$+$. (8) 

Figure 2 shows the domain of periodic solutions for A, = 1 and A, = 2 (s = f 1) .  
The domain always consists of two distinct regions in which the character of the 
solutions differs markedly. When A, = 1,  the solutions in the left region rotate 
clockwise (4 < 0) while those in the right rotate counter-clockwise (4 > 0). The 
dividing curve y, (0)  defines the upper limit of the right region. Solutions just 
beneath this curve only just pass through $ = in, a t  which orientation the aspect 
ratio is greatest, taking an infinite amount of time to do so. Likewise, solutions along 
the upper limit of the left region, the line y = -0, take forever to pass through 
qi = -in, where the aspect ratio is not only greatest but infinite. Recall that positive 
values of 0 imply that the strain axes rotate in an opposite direction to the self- 
induced vortex rotation 0,; negative values imply just the opposite. Just  above 
?,(a) and y = -0, periodic solutions yield to  monotonically extending ones. The line 
y = -0 intersects y c ( 0 )  a t  the point 0 = 0, = -0.074388318 ..., and from there, 
y c ( 0 )  defines the lower limit of the left region until 0 = - a (  = -0+,(l), see (7) ) .  
Solutions along y = 0 simply retain their initial aspect ratio, that is A ( t )  = 1. 

For A, = 2 and s = + 1, or for vortices oriented NE-SW at minimum aspect ratio, 
the domain of solutions differs qualitatively from that for A, = I in only two respects. 
First, a forbidden region appears in the sector bounded by the lines y = 0 and 

with vertex a t  
A 

0, = - Q,(A,) = - 0 
(A,+ 1 ) 2 ,  

Periodic solutions do exist in the forbidden region, only they do not satisfy A( t )  2 A, 
(in fact A( t )  < A,,). Second, the right region contains nutating rather than counter- 
clockwise rotating solutions, and it exists only for 0 > 0, where 

For these solutions, the orientation angle $ oscillates about 4 = in in such a way that 
4 < 0 when A = A,, and 4 > 0 when A = A,,,. Just  beneath the curve y = y;(Q), the 
maximum angular swing, nears n, while just above the line y ( 0 ) ,  it 
nears zero. As 0 approaches Q,, the frequency of nutation for a solution arbitrarily 
near this line tends to zero and, in fact, becomes imaginary in the range 0, < 0 < 
0, (see $3  below). The line 7 itself defines stationary solutions, discovered earlier by 
Moore & Saffman (1971). 

For A, = 2 and s = - 1, or for vortices oriented NW-SE a t  minimum aspect ratio, 
a forbidden region appears on the left, between the lines y = 0 and - y ( 0 ) ,  stacked 
on top of which is a region of nutating solutions. The sense of nutation is simply 
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FIGURE 3. Contour maps of (a )  Amax and ( b )  T/2n for A,, = 1. The contour interval is 0.5 in both 
maps. A,,, = A, = 1 along y = 0. A few selected contours of constant T/2n are labelled for clarity, 
and contours for large values of A,, and T/2n are omitted. 

opposite that for .s = + 1 .  Otherwise, the domain of solutions is similar to that for 

Finally, as A, --f co, the regions of nutating solutions collapse onto the lines y = sd, 
and the curves yE(Q) converge to  the lines y = -sQ. 

Two basic properties of the periodic solutions are examined next. Equations 
(6)-( 8) were solved numerically using a standard fourth-order Runge-Kutta 
integration scheme (with time step At = 0.025) coupled with a Newton-Raphson 
root-finding technique in order to  find the period of evolution, T, and the maximum 
aspect ratio achieved, A,,,, for the periodic solutions. (Tests with finer temporal 
resolution indicate that the results obtained are accurate to within one part in los.) 
Figure 3 shows maps of A,, and T/2x in the (y, d)-plane for A, = 1.  The contours 
of constant A,, are straight because (3) is linear in y and d. The map of T/2x 
confirms that solutions near the various regional boundaries have large periods. 
When A, > 1, there are two sets of maps, one corresponding to each sign s ,  and in the 
following pages, three values receive special attention: A, = 2,3, and cc (a vortex 
layer). Figure 4 for A, = 2, s = & 1 and figure 5 for A, = 3, s = f 1 illustrate the 
variation of A,,, and T/2x with A, and s. Apart from the domain size, these maps 
differ little from the map for A, = 1. For A, + co , or for an infinitely long vortex layer, 
almost all of the solutions are rotating, and for these, h,,,/A, = (lQl+y)/(ldl-y), 
and T = x/(Q2-y2)f independent of s. The remaining solutions, confined to the lines 
y = ssZ, are stationary. 

A, = 1.  
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3. Linear stability 
In  this section, equations are derived which describe the linear evolution of small 

boundary disturbances to the time-periodic basic elliptical vortex and, from these 
equations, growth rates corresponding to eigenmode disturbances are calculated by 
Floquet theory over an extensive region of parameter space. A result which leads to 
an enormous simplification of the stability problem is that the eigenmodes for the 
unstrained elliptical vortex (Love 1893) are precisely the same for the strained one 
(see below). This allows one to obtain two coupled linear equations (with periodic 
coefficients) for each mode symmetry, m (m = 3,4 ,  ...). A brief sketch of the 
derivation follows next. 

It is convenient to move into a coordinate system d , y f  rotating with the 
undisturbed ellipse, a t  the rate 4 given in ( 2 b )  (see figure 1). To obtain the velocity 
of a point in this transformed coordinate system, first note that a point (2, y) in the 
original coordinate system moves according to 

(12Q.9 b) x = u = u,+yx--sly, y = v = v,-yy+szx, 

where 

is the velocity due to the vortex alone (including the disturbance). Here, < is a point 
on the contour %? traversed so as to leave the interior of the vortex on the left. So, 
by taking the time derivative of 

x’ = xcos$+ysin$, yf = ycos$-xsin$, (14) 

(15a) 

(15b) 

one finds k’ = uf - - u: + y(xf cos 2$ - y’ sin 2 4 )  + (4 -a) y’, 

yf  = v’ = vf , - y(y’ cos 24 + x f  sin 24) - (4 - 52) xf , 

where u; satisfies (13) with X’ replacing X. 

R and 8, in terms of which 
Next, a second coordinate transformation is made, now into elliptical coordinates 

x’ = (cR + dR-’) cos 8, yf = (cR - dR-l) sin 8, (16) 

with c = t(a+b) and d = &a-b). Recall, from figure 1, that a is the length of the 
semi-major axis, and b is the length of the semi-minor axis (a = A4 and b = A-g). 
R = 1 gives the position of the undisturbed vortex boundary. 

Now suppose that the disturbed boundary departs only slightly from R = 1, and 
define p(e, t )  = R(0, t) - 1 Q 1. Substituting R = 1 + p  into (16) and discarding terms 
of O(p2) or higher, one may show 

where X f 2  27 = -+--1. 
a2 b2 

Working in terms of 7 proves simplest in what follows. At any particular value of 8, 
q must satisfy 
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Here, Q ( t )  = 8 is the rate of change of 0 following a fluid particle along the 
undisturbed elliptical boundary. Denoting all undisturbed quantities by an overbar, 

2yA sin 24 

(use has been made of (2), (15) and the expressions a; = - l / ( a  + b)  sin 0 and 
.', = l/(a+b) cos8). The last remaining hurdle is the evaluation of 4 in (19). F'rom 
a time-derivative of (18), and ab = 1,  

4 = b2x'uL + a2y'v; - SZ,(a2 - b 2 )  x'y', (21)  

all terms involving d having cancelled exactly. Apart from the implicit time- 
dependence of a, b,  and SZ,, this equation is identical to that obtained in the stability 
analysis of a freely rotating, unstrained vortex (Love 1893). Therefore, since 0 in (19) 
does not depend on 0, both the strained and unstrained linear problems have 
identical 0-structure ; that is to say, 

q(8, t )  = Re [A  ( t )  cos m8 +B( t )  sin me] (22)  

is the eigenmode in both cases. Finally, then, carrying Love's results over to the 
strained problem, 

It is noteworthy that these equations hold for any y and SZ, not just those values that 
permit periodic solutions. Indeed, y and SZ need not even be steady. 

For the periodic Kida solutions, the coefficients in the disturbance equations (23)  
generally vary periodically with time, and so one can assess linear stability by Floquet 
theory (Abramowitz & Stegun 1965, p. 727). In Floquet theory, the amplification of 
the disturbance over a full period matters, and the eigenfunctions are those choices 
of A and B which amplify (or decay) by the same amount each period. The 
eigenfunctions and corresponding amplification factors, or eigenvalues, are de- 
termined by solving (23)  with two independent initial conditions, say 

I A,(O) = 1, B,(O) = 0, 
A,(O) = 0, B2(0) = 1, 

(24)  

and seeking constants cl, c2, and ,u such that the eigenfunction 

satisfies after one period, t = T, 

Using ( 2 4 ) ,  one obtains two algebraic equations 
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whose solvability requires 

This is the amplification through one full period. The average rate of amplification 
through one period is therefore 

(29) u = T-’ Re [logp], 

and the ‘growth rate’ is defined to be the largest of the two u values (corresponding 
to the two values of ,u in (28)). 

The quantities A , (  1’) etc. were obtained by integrating the disturbance equations 
(23) simultaneously with the basic-state equations (6)-(8) through one period. As 
described earlier, the period 7’ is known to 1 part in lo8 via separate integration of 
the basic-state equations. The time step is chosen to be about 0.025, in such a way 
that an integral number of time steps comprise one period. Tests with finer temporal 
resolution indicate that, a t  worst, the growth rate is accurate to six decimal places. 

Maps of u(Q, y ; m ; A,, s )  are presented next corresponding to the parameter values 
A, and s used in figures 3-7 (recall that  A, is the minimum aspect ratio and s = sin 2g5 
when A = A,,). The disturbance wavenumber m ranges from 3 to  8 with maps shown 
for 3, 4, 5,  and 3-8 inclusive (the wavenumbers m = 0, 1 ,  and 2 can be excluded 
because they do not alter the elliptical form of the basic solution). Figure 6, for 
A, = 1 ,  reveals a complex network of instability patches or lobes, predominantly in 
the left region. Instability in the right region appears Concentrated near the curve 
ye(SZ) (dashed line) apart from a few downward bulges. It is important to emphasize 
that the cr = 0 contour is not displayed but, if it were, one would see that all of the 
lobes in the left-hand region actually interconnect like a patchwork quilt (see, for 
example, figure 7). I n  the regions between the lobes, the growth rate is precisely zero 
(both roots of (28) give u = 0 from (29)), implying neutral stability (disturbances 
neither grow nor decay, according to linear theory). Remarkably, the quilted 
structure of the growth rate extends across the line of zero strain, where lobes 
connect with their images at  an infinite number of points 52 = Q,,, n = 0, f 1, +2 ,  . . . 
given by 

12n+4-3m 
4 2n-m 

Q =-- mn 

(see figure 8). That is, arbitrarily small strain rates can destabilize the vortex. The source 
of the instability is the resonance of the disturbance frequency with a harmonic of 
the basic-state rotational frequency 4 (both frequencies tending to constant values 
as y+O). The same kind of behaviour occurs for the Mathieu equation, see 
Abramowitz & Stegun (1965, pp. 721-730). a,, accumulates onto the value SZ = - a  
from both sides as lnl+ 00,  explaining the increasingly complex pattern of instability 
lobes as 0 approaches -a. Remarkably, one can find an m and an n corresponding 
to any rational value of SZ, implying that all rational values of i2  are resonantly 
unstable as y --f 0 (and all irrational values are stable !). While this is an interesting 
mathematical result, it should be emphasized that the growth rates are very small, 
diminishing as ym. 

Consider next the results for A, = 2 (figures 9 and 10). The maps for both signs s 
have the same qualitative features seen in the case for A, = 1, namely the quilted 
network of instability lobes in the left region and the comparatively stable right 
region. Resonances again arise from the correspondence of the disturbance frequency 
v, (defined below) with a harmonic of the basic-state rotational frequency that lead 



to (weak) instability a t  arbitrarily small y .  The resonances stem from the 0-axis a t  
the points SZ = Q,,(ho), n = 1,2,  ..., with 

+urn are the frequencies of modes on an elliptical contour of aspect ratio A, in the 
absence of strain. The v, are real quantities for all m as long as A, < 3, but, for 
A, > 3, v g  becomes imaginary followed in turn by u4, u6, etc. for larger values of A, 
(Love 1893 ; see below). Resonances also occur along the lower boundary of the region 
of nutating solutions (the right region for 8 = + 1 and the left one for 8 = - 1). Here, 
the disturbance frequency resonates with harmonics of the basic-state nutational 
frequency (details omitted). 
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FIGURE 6. Contour maps of growth rate u when A, = 1 for various values of the disturbance 
wavenumber m as labelled on the figure. The contour interval is 0.01, and the lowest level 
contoured .is CT = 0.01. The small-scale waviness of the lowest contour levels is produced by the 
contouring routine and is not reflective of inaccuracies in the computed growth rate. The inclusion 
of higher wavenumbers (m > 8) significantly alters the final, summary diagram only in the vicinity 
of the line y = -9, where the bask solutions achieve a large maximum aspect ratio during their 
periodic evolution thereby enabling the various terms within the brackets of (23) to have 
comparable magnitude. 

The results for A, = 3 are displayed in figures 11 and 12. Except for m = 3, the 
growth-rate patterns qualitatively parallel those for A, = 2. In the maps for m = 3, 
one lobe of instability now covers a substantial part of the regions of rotating 
solutions (the left region for s = + 1 and the right one for s = - I )  and extends down 
to y = 0 where the growth rate must vanish (v3 = 0). A further increase in A, renders 
the solutions along y = 0 unstable first to m = 3 and then to higher-m disturbances 
in turn. That is, the maps for m = 4,5, etc. go through the same sequence of 
morphological changes seen for m = 3 at larger and larger values of A,. 
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0.130; 

0.110 
-0.190 -0.185 -0.180 -0.175 -0.170 

sz 
FIGURE 7. A close-up view of the m = 3 stability diagram in figure 6 in the range -0.19 < 8 
< -0.17, 0.11 < y < 0.13 (recall that the tick marks on the axes in figure 6 are separated by 
0.05). The minimum contour level plotted is u = 1 x (In 
this range of y and 9, the computed growth rate is accurate to 12 decimal places.) 

and the contour interval is 1 x 

As A,  + co , the problem becomes one of assessing the stability of an infinite vortex 
layer in thc presence of a rotating strain field. In this limit, it is appropriate to sct 
m = ikh, with k infinite, for then one recovers Rayleigh’s (1894) dispersion relation 
for disturbances to an unstrained vortex layer; namely v2(k )  = t[(k-l)2-e-2k] (see 
(34) below). k is therefore to  be identified a4 the product of a dimensional 
wavenumber and the width of the layer. Rayleigh showed that the range of 
wavenumbers 0 < k < 1.27846454 ... is unstable and maximally so at k = 
0.796812 13 ... at  which value Im v = 0.201 18558 ... . 

When y > 0, the layer rotates while periodically thinning and thickening (except 
in a few special cases noted below), and one can again turn to Floquet theory to assess 
stability. Taking the limit A,+ GO in (3) provides us with a direct relationship 
between the relative layer thickness A ,  or Ao/A( t ) ,  and the orientation angle q5, 
namely 

(32) 
S2 - y sin 2q5 

A =  
a - y s  ’ 

whereas ( 2 b )  for 4 simplies to 
c j  = ~---ysin2$. (33) 

The actual thickness of the layer does not matter, because neither the original 
equations of motion nor the fluid domain depend on a lengthscale. Now, in order to 



0.010- 

0.008- 

0.006 - 

Y 

0.004- 

0.002. 

0-  
- 0. 

Elliptical vortices in an external straining flow 237 

I 

I " " I " " I " " l  
DO -0.3495 -0.3490 -0.3485 --0.3480 

R 

FIQURE 8. A close-up view of the m = 3 stability diagram in figure 8 near the S2 = Q3,-, resonance, 
-0.35 < S2 < 0.348 and 0 Q y < 0.01 (note the distorted scale). The minimum contour level is 
CT = 1 x lo-@, and the contour interval is 2 x W5. A careful inspection reveals that the ridge of 
peak instability follows the curve y w 0.215(l2-S2,,-,)f, that the Q-width of the instability band 
scales as y4, and that the growth rate along the ridge of instability is CJ R 129ys. Similar behaviour 
has been found for all other resonant42 values inspected, specifically 123$o = -A, a,., = +, and 
S28v-2 = -&. 

obtain disturbance equations for the layer, it is again appropriate to set m = #2, 
with k finite, and in the limit A, -+ co, (23) becomes 

These equations extend those derived by Rayleigh to rotating, extending and 
compressing layers. 

As above, two independent solutions of these equations are calculated by 
numerical integration, and the results after one period are used to calculate the 
growth rate. The new feature here is that the disturbance wavenumber k ranges over 
a continuum of values, k > 0. 

Figure 13 gives maps of the growth rate corresponding to k = 0.79681213, 
1.27846454,2, and 0-5 inclusive, with the results for s = + 1 plotted in the keft region 
and those for s = - 1 in the right region. These maps show the dramatic transition 
that takes place upon crossing the margin of stability for the unstrained layer. The 
case k = 2 shows an infinite sequence of resonant, instabilities along y = 0;  these 
occur at the values Q,(k) = & v(k) /n ,  n = 1,2, ..., and accumulate on the origin. This 
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FIGKJRE 9. For caption see facing page. 

map is analogous to the maps above for A, < 3. The map for k = 1.27846454 is on 
the transition of instability for the unstrained solutions, like the m = 3 maps for 
A, = 3. In the map for k = 0.79681213, the principal lobes of instability centre 
themselves on the line y = 0. 

The map for k = 0 to 5 inclusive (maximum growth rate) shows that layers which 
experience a great degree of thinning during their evolution are less unstable, and 
significantly so, than an unstrained, unthinned layer. The type of straining flow 
which most accentuates this thinning has 1521 -7 4 1521 + y  (see (32)), corresponding 
to a nearly uniform shear flow. 

Excluded from the discussion thus far are the stationary solutions of infinite aspect 
ratio along the lines y = 852, the remnants of the nutating-solution regions for finite 
A,. These stationary solutions correspond to vortex layers in uniform shear, and their 
stability has also been determined by Rayleigh (1894) (see also Dritschel 1989a for 
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FIQURE 9. Contour maps of growth rate u when A, = 2, s = + 1. The contour levels in these 
maps and those to follow are the same as used in figure 6 (ACT = 0.01 between contours). 

further details and remarks on nonlinear stability). Basically, stability follows if the 
eigenfrequencies v (k )  satisfy 

v2(k)  = a[(k(l-2y~)-l)~-e-~”] 3 O (35) 

for all wavenumbers k (see (34) with sin 24 = - 8 ) .  Here, A = 27s is just the external 
shear. For A 2 1 then, a vortex layer is completely stable. For the unstable values 
of A ,  the peak growth rate is very weak near A = 1, only +exp(l / l -A) 
approximately, and tends monotonically to the constant value of + as A 3 - a. 

Finally, consider the stability of the stationary solutions of all aspect ratios as a 
function of A, and 52 (note : results for the special case l2 = 0 were presented by Moore 
& Saffman 1971). For a given A,, the stationary solutions occupy the lines y = 0 and 
y = sy = s[(At-  l ) / ( h i +  l)] (52-Q,), s = & 1. Now since the coefficients of the 
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FIGURE 10. For caption see facing page. 

stability equations (23) are time-independent, one can immediately write down the 
dispersion relation for the eigenfrequencies v, : 

where = (1 +252)A,/(Ai+ 1). The case 52 = 52, corresponds to y = 0, and, in 
general, y = 171 with s equal to the sign of 7. In figure 14, maps are displayed of ys, 
Im vg, Im v,, and Im v5 as a function of A;' (x-axis) and 52 (y-axis). The growth rates 
along the curve for y = 0 are just those that Love (1893) obtained for the unstrained 
elliptical vortex. But, curiously, instability extends all the way to A, = 1 where the 
strain vanishes, and there the instability terminates at the values 52 = - (m- l)/2rn. 
These values of the rotation rate just arrest the motion of the m-fold symmetric 
linear waves on an unstrained, circular vortex. So, once again, arbitrarily weak strain 
can destabilize an arbitrarily circular, basic-state vortex. On another note, the c w  
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FIGURE 10. Contour maps of growth rate when A, = 2, s = - 1. 

m = 2, previously excluded, here deserves attention. One can show that ‘instability’ 
to an m = 2 disturbance occurs between 52 = 52, and 

-this is just the range of 0 for which s = + 1 nutating solutions do not exist, see 
figure 2 ( b ) .  So, the ‘instability’ is linked with non-existence of periodic solutions in 
the vicinity of the line of steady solutions between 52 = 52, and 52,. 

4. Nonlinearity 
The validity of linear theory for the evolution of finite-amplitude disturbances 

may bc questioned on two grounds. First, exponential growth associated with linear 
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FIQURE 11. For caption see facing page. 

instability cannot continue indefinitely, and second, linear stability does not 
preclude nonlinear instability, even for disturbances of arbitrarily small initial 
amplitude. This is because linearly stable disturbances are only neutrally stable. An 
initially ‘pure ’ disturbance, one consisting of a single wavenumber m, interacts with 
itself and the basic flow to excite other wavenumbers which in turn interact with one 
another, the initial wavenumber, and the basic flow to generate yet other 
wavenumbers, and so on. Take, for example, a straining flow with y = 0.12 and SZ = 0 
and subject an initially circular vortex to either of two boundary disturbances, 
~ c o s 3 0  or ssin30, with E small. The two disturbances correspond to the initial 
conditions used for the first and second Floquet solutions, (A,,B,) and (A2,B2) ,  of the 
previous section. After one period of nonlinear evolution, calculated using a contour- 
dynamical algorithm (see below) at  sufficiently high resolution to free the results of 
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FIGURE 11. Contour maps of growth rate r when A, = 3, s = + 1. 

significant numerical error, the vortex boundary was spectrally analysed (with the 
same accuracy considerations) and compared to that expected by linear theory. 
Results for E = 0.002, 0.001, and 0.0005 are listed in table 1. Note that the 
discrepancies between the nonlinear and linear spectral coefficients scale with e2 for 
even m and e3 for odd m. It is suggested that the quadratic interaction between the 
original harmonic and itself coupled with the two-fold symmetry of the basic flow 
generates all the even disturbances at O(e2), whereas the nonlinear generation of odd 
disturbances requires either a cubic interaction between the original wavenumber 
and itself (and the basic flow) or the interaction between the original wavenumber 
and an even wavenumber, already of quadratic order, and the basic flow. 

Just as in the example just discussed, it is possible to reproduce the linear Floquet 
results through one period to any desired accuracy using fully nonlinear calculations 
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FIGURE 12. For caption see facing page. 

for any basic flow and disturbance wavenumber. Even so, the nonlinear calculations 
and the linear analysis do not always agree on the ultimate stability of a basic flow, 
and the disagreement is not due to  inadequate numerical resolution. 

It is perhaps best to briefly discuss the numerical algorithm before proceeding. The 
algorithm, ‘contour surgery’ (Dritschel 1988 a, 1989b), fundamentally extends 
‘contour dynamics’ (Zabusky, Hughes & Roberts 1979) by allowing for the 
automatic removal of fine-scale vorticity features at scales typically four to five 
orders of magnitude smaller than the scale of the entire vorticity distribution. This 
approximation enables one to continue contour-dynamical calculations, accurately, 
well beyond the limits of contour dynamics itself by lessening the computational 
burden. The algorithm depends on four parameters: L,  the scale of the vorticity 
distribution (L  = 1 throughout) ; p, a parameter proportional to the distance between 
points on a contour; 6, the smallest scale resolved; and At, the time step. In  this 
paper, accuracy is measured in two ways: by the maximum fractional discrepancy 
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FIGURE 12. Contour maps of growth rate u when A, = 3, s = - 1. 

between the computed area and the initial area of the vortex, E~ (including any bits 
that get disconnected by surgery); and by the ‘phase’ error (Dritschel 1989b)’ 

where A( t )  is the computed area of the vortex at time t ,  and w is the jump in vorticity 
across the vortex’s edge (w = I ) .  

Reported first are the results of 234 moderate-resolution calculations used to 
determine the margin of apparent nonlinear stability for strained, initially circular 
vortices. All of the calculations begin with exactly the same initial conditions and use 
the same algorithm parameters, y = 0.03, 6 = 0.000 13, and At’ = At/27t = 0.05. 
Initially, 240 points or nodes resolve the vortex, and each of these nodes is displaced 
radially by a random number uniformly distributed between and lo-*. 
Nonlinear stability is judged by monitoring the variation of the number of nodes : if 
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FIGURE 13. For caption see facing page. 

the number of nodes varies periodically through t’ t / 2 x  = 100, the vortex is said to 
be stable, otherwise it is unstable. In  almost all unstable cases, the number of nodes 
increased by an order of magnitude before the calculation ran out of computer time. 
This definition of nonlinear stability is not the only one possible, but i t  serves our 
purpose by being sensitive to the growth of disturbances that eventually drive the 
flow continually further from its initially nearly elliptical state. A tighter definition, 
for example one sensitive to any degree of disturbance amplification, would give very 
different results (see below). 

In  figure 15, the results of the 234 calculations are superimposed on the linear 
stability diagram for A, = 1, from figure 6. While there is some agreement between 
the margins of linear and apparent nonlinear stability, it is not perfect. For example, 
when y = 0.12 and SZ 0, the case studied in table 1 ,  the linear analysis predicts 
stability whereas three nonlinear calculations done at different resolutions definitely 
show fluid-dynamical instability, see figure 16. Given the small size of the initial 
disturbance in figure 16, no wavenumber having an amplitude in excess of 5 x 
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FIGURE 13. Contour maps of growth rate n when A, = 03 for various disturbance wavenumbers 
k, with the results for s = + 1 in the left region (f2 < 0) and those for s = - 1 in the right. Three 
selected wavenumbers feature, and the final map gives the growth rate maximized over the range 
0 < k < 5. A few contours are labelled for clarification. 

the observed instability suggests that nonlinear mechanisms, as yet unknown, act to 
amplify the disturbance no matter how small the initial disturbance may be. 

It is notable that, under the right circumstances, an initially circular vortex may 
be destabilized by strain as weak as 0.008 (at 51 = -0.22). The rate a t  which the 
instability destroys the elliptical solution is, however, very slow as figure 17 
illustrates. Only a thin filament is pulled from the vortex, yet the vortex will never 
again recover a simple shape. In  this sense, the instability is irreversible. In a coarse- 
grained sense, the vortex keeps a general elliptical shape, although there remains a 
noticeable large-scale disturbance. This disturbance may eventually lead to a second 
filament, then a third, and so on until the vortex either ultimately disappears into 
a mass of fine filaments or settles down to a vortex of reduced size capable of 
surviving both the strain forcing and the disturbing influence of the surrounding 
filaments. 
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PICHJRE 14. Contour maps of the strain rate y(Q, A;') and the growth rate for m = 3, m = 4 and 
m = 5 for the stationary solutions. The contour interval is 0.025 in all maps, and the zero-contour 
is displayed. A,' ranges from 0 to 1, and 52 ranges from -t to  $, with tick marks along each axis every 
0.1. y = 0 along the right-hand edge (A ,  = 1 )  and along the interior curve 52 = 52, = -&/(A,+ 1)2.  
Along 52 = a,, the growth rates are identical to those obtained by Love (1893) for a freely rotating 
elliptical vortex. 

By contrast, it takes a comparatively large strain rate to destabilize a vortex when 
52 > 0 or when the external rotation is in the same sense as the self-induced vortex 
rotation (ae). For example, in pure 'cooperative' shear, y = 52, instability occurs 
when y 3 0.475 (see figure 18) ; the case y = 0.475 is, however, linearly stable. Note 
the rapid oscillation of the basic flow and the ferocity with which filaments are torn 
from the vortex. The strong external shear flow sweeps filaments in opposite 
directions on the upper-left and lower-right sides of the vortex, while the circulating 
velocity field induced by the vortex eventually draws filaments from one side to the 
other. So, the filaments whip around the vortex in a highly-eccentric manner. 

In  the previous two calculations, irreversible changes to the vortex commenced 
with the loss of a single filament. The next two calculations exhibit other methods 
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Cosine disturbance Sine disturbance 

m 8Arn wn m SAnI 8Bm 
E = 0.002 

1 0.000 13 0.00008 1 0.00001 0.000 52 
2 -0.121 24 - 0.002 89 2 -0.153 82 0.009 76 
3 0.000 53 -0.001 64 3 0.00574 0.001 13 

0.025 74 -0.047 38 4 -0.01 123 0.01480 4 
0.000 87 5 -0.00058 - 0.000 46 5 -0.00135 

6 0.002 43 - 0.000 1 3 6 -0.00803 -0.002 14 
7 0.00002 0.000 17 7 0.00066 0.000 20 

E = 0.001 
1 0.00003 0.00002 1 - 0.000 13 
2 -0.05837 -0.001 26 2 -0.07464 0.00505 

0.001 43 0.000 25 3 0.000 15 - 0.000 40 3 
4 - 0.005 69 0.007 39 4 0.01291 -0.02364 
5 -0.000 13 -0.000 12 5 - 0.000 33 0.000 22 

6 - 0.004 04 -0.001 05 6 0.001 20 - 0.000 03 
0.00004 7 0.00001 0.00004 7 0.000 17 

E = 0.0005 
0.00004 1 0.00001 1 

2 -0.030 37 -0.00073 2 -0.03851 0.002 43 
3 0.00003 -0.000 10 3 0.00037 0.00007 
4 - 0.002 83 0.00369 4 0.00649 -0.01 182 

0.00005 5 - 0.00004 - 0.00003 5 - 0.00008 
6 0 .OOO 60 - 0.00002 6 - 0.002 02 -0.00054 
7 7 0.00004 0.00001 

TABLE 1. A comparison between linear theory and nonlinear calculations after one period of 
basic elliptical evolution 

- - 

- - 

Note : Listed in the discrepancy in spectral coefficients SA, and SB, between the nonlinear 
calculations and the linear theory after one period of evolution. The results apply to an initially 
circular basic vortex in the straining flow y = 0.12 and i2 = 0. At the initial instant, the boundary 
is radially disturbed by the amount ecos38 or esin38. In linear theory, after one period (T= 
26.7745659 ...), the vortex boundary changes to r = 1+~(0.5164118cos3t9+0.4209286sin30) for 
the cosine disturbance and r = 1 + E(  - 0.420928 6 cos 38 + 1.593 339 1 sin 38) for the sine dis- 
turbance. In the nonlinear calculations, the vortex boundary changes to r = 1 +EZ,A,  cos me + B, 
sinme, generally. The results are accurate to  the number of decimal places given. 

of destabilization. For y = 0.1 and 52 = -0.3 (figure 19), two symmetrical filaments 
are cast from either end of a vortex initially disturbed by random noise only. Just 
before the filaments appear, the boundary carries a dominant m = 4 wave, most 
clearly seen a t  t = 33.5. The linear analysis also predicts greatest instability for 
m = 4, but several other modes are nearly equally unstable (v3 = 0.043, v4 = 0.047, 
v5 = 0.039, and v6 = 0.015). For y = 0.15 and 52 = -0.3 (figure 20), the boundary 
carries a complex mixture of waves just preceding the appearance of filaments (the 
linearly unstable modes amplify at the rates v4 = 0.021, v5 = 0.053, v6 = 0.030, 

= 0.029, vl0 = 0.030, and vI1 = 0.018). At later times, filaments surround a vortex 
consumed in large-amplitude breaking waves bent on reducing the vortex to fine 
filamentary debris. 

The next series of calculations begin with elliptical basic vortices, and just those 
vortices which would be held stationary by the strain field if left undisturbed. By 
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FIQURE 15. Superposition of the results of 234 nonlinear calculations on the linear stability 
diagram for A. = 1 (figure 6, c = 0.01 contour level only). The symbols A and V mark the stable 
and unstable calculations respectively. The heavy solid curve denotes the apparent boundary of 
nonlinear stability. 
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FIGURE 16. A fully nonlinear, contour-surgery calculation of the evolution of a randomly disturbed 
circular vortex in the straining flow y = 0.12, SZ = 0. Time, t' = t/271, is labelled in each frame; the 
evolution proceeds across then down the page. Note the gulf of time between the first two frames; 
during this interval, the vortex returns to a near circular shape 56 times (T = T/2x z 4.2613). 
Algorithm parameters: ,u = 0.015, 6 = 2.81 x and At' = 0.01. Accuracy: c, = 0.00022, 
B,, = 0.59". 

FIGURE 17. (a) The evolution of a vortex in the straining flow y = 0.008, SZ = -0.22. Here, 
the vortex returns close to its original circular shape only three times (T z 31.2715). ,u = 0.015, 
6 = 2.81 x At' = 0.05, el = -0.0011, and eA = 0.33". (b) A shaded enlargement of the flow 
a t  t = 131. 
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FIGURE 17 (a, b ) .  For caption see facing page. 
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FIGURE 18(a). For caption see facing page. 

picking y and D from the ridge of the m = 3 instability lobe in figure 14 and varying 
the aspect ratio A,, a transition from recurrent to non-recurrent behaviour was 
found between A, = 1.7 and 1.8. I n  figure 21, for A, = 1.7 (y = 0.0369826 
and 52 = -0.3093137), a clear three-fold disturbance emerges, decays back to 
near zero, and re-emerges after a long period of time. By contrast, in figure 22, for 
A, = 1.8 (y  = 0.0391534 and L? = -0.3037037), filaments erupt from the vortex 
boundary and drive the flow further and further from its original state. 

The calculations above repeatedly illustrate the generation of small-scale structure 
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FIQURE 18. (a)  The evolution of a vortex in the straining flow y = 0.475, f2 = 0.475. T x 1.3346. 
,u = 0.015, 6 = 2.81 x At' = 0.025, er = -0.0031, and E ,  = 0.90'. (b )  Continuation of the 
evolution shown in (a). 

(filaments) initially by the breaking of comparatively large-scale waves or 
disturbances, followed by the interaction of filaments with the remaining, principally 
large-scale vortex. In  figure 22, for example, the original filament thickens along one 
part of its length owing to the favourable nature of the local strain field (that due to 
the vortex plus that due to  the external flow), and, subsequently, this thickened 
region approaches the vortex boundary, induces a steepening wave there of the size 
of the thickened region, and eventually forces new filaments to be shed. This 
newly disturbed section of the vortex boundary then spreads through repeated 
'filamentation ' (Dritschel 1988b), while other parts of the boundary begin to  
pass through a similar sequence of events. 

5. Discussion 
A linear Floquet analysis has revealed a surprisingly rich instability structure for 

elliptical vortices in an external straining flow. Linear instability extends to  
arbitrarily weak strain for many values of the strain-axes rotation rate for the reason 
that the linear-disturbance frequency resonates with harmonics of the basic driving 
frequency. The growth rates for very weak strain scale with powers of the strain rate 
and are thus practically negligible. For larger values of the strain rate, growth rates 
between 5 and 25 YO of the relative vorticity of the vortex are frequently encountered. 
As the minimum aspect ratio A, of the basic solution increases, instability of greater 
vigour covers a wider range of strain and rotation rates. The first morphological 
change to  the stability diagram with increasing A, occurs a t  A, = 3. At this value, the 
three-fold symmetric eigenmode (m = 3) for the unstrained elliptical vortex is 
marginally stable (Love 1893), and non-zero strain a t  any permissible value of the 

w 
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FIGURE 19. The evolution of a vortex in the straining flow y = 0.1, SZ = -0.3. T % 4.1785. 
p = 0.015, S = 2.81 x lo-', At' = 0.05, ef = -0.0028, and eA = 0.40'. 

rotation rate gives rise to instability. At larger values of A,, the m = 3 mode is 
unstable at zero strain, and successively larger m become unstable at both zero and 
non-zero strain as A,, increases. Finally, as A, + 00, new results are obtained for the 
stability of infinite vortex layers that extend the classical results of Rayleigh (1894). 
Nearly all values of the strain and rotation rates lead to instability for the layer, but 
when the strain rate is comparable with the magnitude of the rotation rate, the most 
unstable disturbance amplifies a t  a rate an order of magnitude smaller than when the 
strain is completely absent. 
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FIGURE 20(a). For caption see next page. 

Nonlinear simulations on the one hand confirm the linear theory as far as 
reproducing the linear Floquet matrix with discrepancies that scale with quadratic 
or cubic powers of the initial disturbance amplitude, yet on the other hand do not 
always agree with the linear analysis as to the ultimate stability of the flow. The 
disagreement is on two fronts. First, disturbances to some linearly stable flows 
definitely do grow, produce filaments, and significantly alter the gross structure of 
the flow over time, and the evidence presented suggests that a nonlinear mechanism, 
yet to be determined, can amplify disturbances of any initial size whatever, perhaps 
initially like some power oft. Second, some linearly unstable flows apparently do not 
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FIQURE 20. (a )  The evolution of a vortex in the straining flow y = 0.15, SZ = -0.3. T x 3.8075. 
,u = 0.015, S = 2.81 x At' = 0.05, e f  = -0.0016, and eA = 0.35'. (b )  A shaded enlargement of 
the flow at t = 54. 

FIGURE 21. The evolution of a vortex of initial aspect ratio A, = 1.7 in the strain field y = 
0.0369826 and L! = -0.3093137. In the absence of disturbances, the vortex would remain 
stationary. Here small, random disturbances lead to the fully amplified, predominantly three-fold 
disturbance seen at t = 57. This disturbance recurs, after a 180" phase shift, at t = 3 x 67 = 171. 
p = 0.015, d = 2.81 x lOP, At' = 0.05, E, = 0.00006, and E, = 0.29'. 

significantly alter the gross structure of the flow, in the sense that the flow 
recurrently departs from and returns close to  its initial state. That is not to say that 
the vortex boundary will remain simple for all time, for 'filamentation ' may well 
eventually envelop the whole boundary (Dritschel1988b, 1989b), but rather that the 
coarse-grained position of the vortex boundary may recur over and over again. 

The discrepancies found between the linear and nonlinear calculations suggest that 
a weakly nonlinear theory, developed to cubic order in disturbance amplitude, may 
be sufficient to explain the origin of the discrepancies. As noted below, such a theory 
could contribute to  the development of a low-order model of two-dimensional vortex 
dynamics. And, from a mathematical point of view, the theory would no doubt 
uncover new phenomena, for example, finding large-order behaviour around certain 
key values of the strain and rotation rate. 

A few extended nonlinear calculations have pointed to a generic route to 
instability. At first, a disturbance amplifies at the expense of the basic, periodic flow 
(see the Appendix for a discussion of the energetics). Next, the disturbance steepens 
or begins to tilt to one side. Steepening is fundamentally a nonlinear process linked 
with the growth of large wavenumbers a t  the expense of smaller ones. By analogy 
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PIGUEE 22. The evolution of a vortex of initial aspect ratio A, = 1.8 in the strain field y = 
0.039 1534 and 52 = -0.3037037. As in the previous figure, the strain field is such as to keep an 
undisturbed vortex of this aspect ratio stationary. Note the complex motion of the filaments and, 
in particular, the way in which enlarged parts of the filaments approach and dig into the vortex 
boundary. p = 0.015, S = 2.81 x At' = 0.05, ef = -0.00021, and eA = 0.042". 

with previous work (Dritschel 1988b, 19893), steepening takes place where fluid 
particles on the vortex boundary are converging, usually to one side of the 
disturbance maximum. An abrupt change then occurs when the disturbance folds 
over or 'breaks ', at which stage filaments begin to form. The contour perimeter then 
rapidly grows as the filaments are thinned and stretched by the straining flow arising 
from both the external flow and the vortex itself. Subsequently, the straining flow 
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FIGURE 23. The time evolution of the vortex self-energy E,,, the interaction energy between the 
vortex and the strain flow E,,, and the combined, theoretically invariant excess energy E for the 
unstable vortex evolution depicted in figure 17. 

largely governs the motion of the filaments, the filaments moving about as if they 
were passive. But, the straining flow around the vortex is not wholly extensional, 
that is, filaments are not always being thinned and stretched everywhere. At times, 
parts of filaments may be sufficiently enlarged to induce further filament generation 
along the vortex boundary. And, all along, new disturbances are swelling up, 
steepening, and generating further filaments, further fuelling the spiralling 
complexity of the vortex boundary and the deterioration of the interior vortex core. 

A challenging problem would be to relax the assumption of steady strain and 
rotation rate, for these are the worst assumptions of all in a fluid with many 
interacting vortices. But one can still study the evolution of linear disturbances using 
the equations developed in $3, for these equations apply equally well to  unsteady y 
and Q. An exciting possibility would be to combine the 'elliptical moment model ' of 
Melander et al. (1986) with the linear disturbance equations developed here, or better 
yet, with a future weakly nonlinear set of equations. Melander et al. (1986) have 
derived an approximate set of evolution equations for the aspect ratio, orientation, 
and centroid position of any number of interacting, separated vortices. Essentially, 
they extended, non-trivially, Kida's (1981) analysis to more than one vortex by 
explicitly calculating the strain field arising from all the vortices. A model of vortex 
dynamics substantially simpler than the full equations and less restrictive than the 
moment model is envisioned which combines (a)  the moment model, ( b )  disturbance 
equations, and (c) a means to introduce disturbances, to  merge vortices, and to 
approximate the mean effects of fine-scale structure. Disturbances can be introduced 
by evaluating the higher-order moments discussed by Melander et al. (1986). Results 
from current research on the merging of vortices in an external strain flow are 
providing quantitative estimates for the completeness of merging and may lead to a 
simple, approximate procedure for it. Efforts are also being directed a t  tackling 
perhaps the most difficult problem, namely to capture the gross effects of the 
unresolved, fine-scale features in coarse-resolution calculations, by the development 
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of ‘fuzzy-contour dynamics ’, an approximate model for the evolution of steep-, but 
finitely steep-edged vortices (in preparation). 

The computations were performed on the Cyber 205 a t  the University of 
Manchester Computer Centre and on the Cray X-MP/48 at  Rutherford-Appleton 
Laboratory, with the support of the UK Science and Engineering Research Council, 
the US Office of Naval Research, and the Natural Environmental Research Council’s 
UK Universities’ Global Atmospheric Modelling Project. 

Appendix. The energy of a straining flow 
Suppose that there exists a finite region of the plane where the vorticity differs 

from that of the background straining flow -2Q. While the energy, the kinetic 
energy, is generally infinite, one can remove the infinite parts of the energy to  leave 
a finite, invariant quantity called the ‘excess energy ’. The procedure to  remove the 
infinite parts closely follows that discussed in an earlier work (Dritschel 1985), in 
which the excess energy for an unstrained flow was defined. 

Basically, one separates the energy 

T = L/J(u2+vP)dxdy. 2 

where u = u,+yx-Qy, v = we-yyfQx (A 2% b)  

into three terms, all of which are generally infinite: 

T,, = i (y2+Q2)  [[(x2+y2)dxdy--2yC2 [[xydxdy. 
J J  J J  

One then removes the parts of these terms that depend only on the size of the 
domain, say L, as L+ co and on the total, finite, invariant circulation re associated 
with the relative vorticity distribution we (u, = -a+,/ay, v, = a+,/ax, we = V2+,). 
The term T,, can be removed entirely as it depends only on the size of the domain. 
The infinite parts of T,, and T,s can be removed by an integration by parts and an 
application of Stokes’ theorem leaving 

”,. ,.,- 
Tzs = y JJ wexydxdy-@ we(x2+y2)dxdy. JJ 

The invariant, finite part of the energy is simply T* = T,*, + TZ,, the sum of the self- 
energy and the energy arising from the interaction between the external flow and the 
anomalous flow u,. 

I n  this form, the excess energy T* cannot be used to compare the energetics of 
different vorticity configurations, because the stream function +e in (A 4a)  is known 
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only to within a constant. To resolve this ambiguity, the stream function is defined 
as 

where I is an appropriate lengthscale (Dritschel 1985). While there is some freedom 
of choice, 1 must be chosen in terms of invariant quantities (not including T* of 
course). In  a straining flow, the only available invariant quantities are the areas 
enclosed within isovortical contours (we = constant) or within contours of dis- 
continuous vorticity, depending on whether the vorticity distribution is continuous 
or piecewise-constant. Contour area must then appear in the definition for 1, and it 
is suggested that the following choice be adopted to standardize the definition of 
excess energy : 

for continuous vorticity distributions, and 

for piecewise-constant ones. Here, w,,, is the maximum value of we,  and likewise wmin 
is the minimum value. The sum in (A 7) ranges over the number of contours, and 
is the jump in vorticity across the kth contour. For a single vortex patch, nZ2 is simply 
the vortex area A .  

The energetics of the undisturbed and disturbed elliptical vortices of this 
paper illustrates the important interplay between the vortex self-energy and 
the vortex-strain field interaction energy. Defining E = 16nT*/A2 + 452 as a 
dimensionless energy, the undisturbed elliptical vortices satisfy 

(A,+1)2 A 2 - 1  ( A  - 1 ) Z  + 2 y L - 2 5 2  0 
4A0 A0 A0 

E = 1-210g 

or E = 1+2c, where c is the constant of integration appearing in (3). The terms 
proportional to  y and 52 together comprise the interaction energy. In general, the 
interaction energy rises and falls, being exactly compensated by the fall and rise of 
the vortex self-energy. Of greater interest, though, is the variation of these 
components of the energy in an unstable flow. Figure 23 shows the time evolution of 
the self-energy, E,, = 161cT;F,/A2, the interaction energy, E,, = 16nT,*,/A2 +48, and 
the combined, theoretically invariant energy E for the calculation illustrated in 
figure 17 (A, = 1, y = 0.008, and 52 = -0.22; for notes on the numerical calculation 
of E,  see Dritschel 1986, 1989b). E changes by only 0.1% during the entire 
evolution. E,, and E,, oscillate a t  first, but once the instability becomes noticeable 
in figure 17, E,, increases beyond its normal range at the expense of E,,. In  other 
words, the instability corresponds to a transfer of energy from the vortex self-energy 
to the vortex-strain field interaction energy. 
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